Problem statement for launching an Al Capability Growth

Client expectation

2
»

K2
%

Deploy OOTB (Out of the Box) Al enablement
capabilities internally to drive efficiency and

effectiveness across all of organization.

There is absolutely no excuse for not making
Al assisted development part of your
workflow. With all the productivity evidence
and free assistance and training provided, |
would not even consider engineers for a job
without skills and experience using Al dev

tools. Invest time in your career.

Industry Trend

2
»

We believe there is an opportunity for TWs
delivery teams to leverage Al tooling to help

us deliver more efficiently to assist our clients

o 2024 7oA, 8EILING Valye to market faster.

2
%

2
%

2
%

Individual

2
%

#1: No clear and achievable expectations for the use of Al tools
#2: No clear guidance on how to measure capability growth

#3: No clear measure of success from the use of Al

#4: Not yet able to hands on development

#5: Not sure how to achieve best practices in a team context

#6: Al Development is progressing very rapidly and it can be
confusing for individual to figure out what to use when

#7: Hard to follow the current trends

Al Capability Growth Framework

{ERgRRE b —
\ ~ | - o _—
= —1 - - st ll | B
ndelly o
and Prompting Techniques. Needed
Prompting Techniques. outputs gy Dameniy —
+ Playing with Generative Al toral o
s
. Pt g s o i =
S MRS ST e s o
= ﬂ _______ .= n s s =N I N e
e ook | e St EE T OID
| . =
. i i i B =
il =
w0 ¢ == === § ot e docmrs =
BN o e oree =
Pooverat Araftful -
oot | Kraf P — -
Building Al Capability Growth framework based on From a practical perspective, a learning path map is developed to enable
Discovery-and-Delivery-Process to solve #1, #3, #4, #5, #7. It allows us to look individuals to learn the fundamentals, hands-on practice and trendy
at the integration of Al in each activity from an agile engineering perspective, development directions end-to-end to address #2, #5, #6, #7

and the potential tooling options also allow us to keep our eyes on

Al Capability Growth Roadmap

development trends.

© 2024 Thoughtworks | Confidential

Session

Introduction to Artificial
Intelligence
Phase 1
Fundamentals of Al and
Language Models

Use Cases of Al in
Software Development

Phase 2
Gen Al Data and Model
Understanding

Generative Al and Data
Model

4 Phas? 2 Risks in Al Development
Risks, Ethics, and and Mitigations
Mitigations g
Effective Prompting
Techniques
Phase 4
Effective Prompting
Techni
sendes Collaborative
Development with Using
Gen Al
GitHub Copilot (Dev Only)
Phase 5

Hands-on Experience with
Generative Al Tools
Hands-on with GitHub
Copilot (Dev Only)

Fine-Tuning Models for
Specific Domains

Phase 6
Advanced Techniques and
Integration

Cloud Integration

Future Trends of Gen Al
Plus Software
Development

Agenda

auy

Overview of Al, machine learning, and deep learning.
Differences between narrow Al and general Al
Fundamentals of Language Models.

Introduction to Natural Language Processing (NLP).

Exploration of Al in the software development lifecycle.

Real-world of Al i ion in projects.

Basic principles and mechanisms "

Model outputs and informed decision-making.

Problems of biases and inaccuracies. iz

Potential ct and risks iated with using Al. e
ies for risk in Al proj; .

Best ices for mail ethical dard:

Comparison of tools and their capabilities. o)

Crafting prompts to get desired outputs.
Tips for refining prompts for better results.
ing and optimizing tool usage.

Team collaboration strategies when using Al tools.
Version control and collaborative prompting.

Introduction to GitHub copilot
Best practices and handy tips

Prerequisites and getting started
Hands-on coding with GitHub copilot

Tailored models for domain-specific requirements.
Hands-on experience with fine-tuning.

for g of Al with cloud service.
Automation and optimization techniques.

of ging and their impact on
software development.
Prediction on the future trajectory of Gen Al in the technology

field.

Link is in the right bottom corner

Learning Materials

Ay Machine Overview of
e Splunk Learning NLP
executive's) o ML Essentials (Section 3-
Rulceitc Al (Section 1) 4
N Al-assisted
UMempowers Al-Assisted sofwarc
R&D efficiency Software development
improvement Delivery praclices
guideline
Generative Al ChatGPT Generative Al How
107 Introduction Learn about
to Generative Al GhlEin the next Al Clilesr
Concepts model frontier actually
(Unit1-3) behind (Section 1- 3) works
101 Introduction 101:Introduction Navigating Privacy and
to Generative Al to Generative Al risks of Al Security When
Concepts. Concepts. language Prompting
wnit#) Wnits) model
Prompt Prompt Prom Beyond The complete
GenAl: A
nAlL: Prompt prompt
Camp camp Eamp; toolkitof Al Frameworks engineering for
101 201 301 techniques Al bootcamp.
GitHub MS e OpenAl
q - CodoWhis
copilot copilot et codex
Getting Decoding
started with GitHub Copilot
GitHub - Al Coding
Copilot Assistance
GitHub Copilot SRHUb
e Copilot for
DevOps.
LLM fine- GenAl
tuningon mPementaton
OpenAl Translation
Generative Rapid LLM App
% Prototyping: A
: Al Solution e
vs. Costs. Exploration: Approach with
PE, RAG, FT Dity.ai

Awesome
prompting

Our Journey of Al Capability Growth Initiative

Publish governance Y Engaging VN on Leveraging
framework GitHub Copilot
® ® Measuring GitHub

Copilot usage in delivery
Build TDD with GitHub Copilot

ChatGPT usage Continue social learning

promotion ® workshop in VN
® Define Gen Al capability ® ® ®
® publish Learning Path &
growth initiative © Explore the use of Gen Al to
relevant quiz - Simplify and continue measure
®) . . accelerate splitting
prompting engineering ® . GitHub Copilot usage in delivery
Recap Gen Al promotion requirements
problem

[J
Build TDD with GitHub Copilot workshop

2023Q3 2023Q4 > 202401 > _2024Q2 > _2024Q3 D> ____now

80.5%(Xian)
61.9% (VN)

> 90%

100% 15.8%

Everyone who participates in the
workshop submit at least one

Finish 7 sets of devs completed the insight, including ticket, commit,
etc four major usage scenarios,

Keep collecting insights from reducing the average cycle
path stage 1~4 Copilot workshop new member by team iteratively
collecting GitHub Copilot usage
data

Using GitHub Copilot
reduced coding time for

quizzes for Learning TDD with Github

time of each team by
15.8%

GitHub Copilot Applicability Analytics

Getting feedback from all team members that participated in the TDD with GitHub Copilot workshop. Picking up 1 of sprint data, these teams
completed a total of 150 tickets in the recent iteration. Among them, 73 tickets did use GitHub Copilot (48.7%), 77 tickets did not use GitHub
Copilot (51.3%).

The teams' usage scenarios can be roughly divided into four categories: Scenarios where GitHub Copilot is Not used:

e
<

Generate test: including generating test code and .

o <> Local environment setup
test data. Because the code structure is simple,
i . . . the accuracy is higher. M Manual tests
Distribution and improved efficiency

. .
< Generate business code: the accuracy is limited © Knowledge sharing

by the business context, and the probability of the % Straightforward tasks
23% share generated code being adjusted is relatively high, % Tools decommission or upgrade
e about 30% ~ 80%. < Designing and Solutioning
L3 Write scripts: Since the generated scripts are less & Alerting & monitoring
relevant to the business, the prompting needs to o

<& Supporting requests
contain less information and the generated code rer g .

8 % Vulnerability fixing
is more accurate.

. . % Troubleshooting cross the system
» Explain code: Teams use code explanation as a

more efficient way to collect business code and
Generate tests Generate business code

. . . information, and some teams even use it to share
Write scripts Explain code

business context in a session, especially for the

legacy code.

GitHub Copilot Increases Speed and Productivity

Our Thoughtworks Teams

Generate tests Generate business code Write scripts Explain code .
Applicable General
weighted i
Scenarios | DEVelopment 23% [Z] 41% 13% 23% gt weighted
time cycle time cycle time
Coding time Cycle time Coding time Cycle time Coding time Cycle time Coding time Cycle time saved [S] saved 48.7%
saved saved saved saved saved saved saved saved
Ver
optimi‘; - 76.5% [X] 30.0% [Yi] 23.0% 50.0% 38.3% 50.0% 38.3% 40.0% 30.6% 33.0% 16.1%
Middle 55.4% 28.0% 15.5% 29.4% 16.3% 38.7% 21.4% 22.0% 12.2% 15.8% 7.7%
Pessimistic 48.0% 15.0% 7.2% 10.0% 4.8% 33.3% 16.0% 10.0% 4.8% 6.8% 3.3%

S=) XxY;xZ ne{l,2,3,4}

1=1

48.7%: According to the most recent iteration, the team has completed about 150
tickets in total. Of these, 73 tickets did use GitHub Copilot (48.7%).

X = Development Time (the percentage of time the team spends on implementation and testing during a sprint. In the table above, this value represents the average

for the Xi'an team in each segment over the past two months)

Y = Coding Time saved (the percentage of coding time saved based on the analysis of each ticket collected by the team capability champion)

Z = Usage Scenario Proportion (a statistical value representing the proportion of tickets for this type of usage scenario in the sprint)

S = Applicable Cycle Time Saved (the average improvement rate of overall cycle time across teams after weighting each usage scenario (currently 4 usage scenarios))

