
How Much Faster Can
Coding Assistants
Really Make Software
Delivery?

Sichu Zhang
Apr 2025

© 2025 Thoughtworks | Confidential 2

MaintenanceDeploymentTestingDevelopmentDesignAnalysisPlanningResearch

● Market Research
● Competitor Analysis
● User Needs Identification
● Feasibility Study
● Technology Exploration
● Regulatory Requirements Identification
● Security Considerations
● Existing System Analysis (for modernization)
● Mobile Platform Analysis (for mobile projects)
● Data Analysis (for data projects)

● Project Scope Definition
● Communication Planning
● Project Governance
● Documentation Plan
● Mobile Platform Selection
● Resource Planning
● Budget Planning
● Risk Management
● Quality Assurance Planning
● Data Migration Plan
● Security Planning
● Project Scheduling

● System Design
● Software Architecture Design
● UI/UX Design
● Compliance-Driven Design
● Security Design
● API Design (for application development)
● Microservice Design (for modern applications)
● Mobile Design (for mobile applicalions）
● Data Pipeline Design (for data platforms)
● Risk management policy creation
● Incident response plan creation
● Infrastructure Design
● Database Design
● Privacy policy creation
● Terms of service creation
● Security policy creation
● Data retention policy creation

● Alpha Testing
● Compliance Testing
● Accessibility Compliance
● Defect resolution
● System Testing
● Non-functional Testing
● User Acceptance Testing UAT
● Beta Testing
● Mobile App Testing (for mobile projects)
● Data Testing (for data projects)
● Accessibility Testing
● Load and Stress Testing
● Compatibility Testing
● Defect tracking
● Unit Testing
● Integration Testing
● Functional Testing
● Regression Testing
● Automation Testing
● Test data management
● Test reporting

● Software Architecture Analysis
● Data protection impact assessment
● Requirement Gathering
● Compliance Requirement Identification
● Requirement Analysis
● Business Process Analysis
● User Interface Analysis
● Security Analysis
● Existing System Analysis
● Data Analysis
● Vulnerability Assessment
● Data Source Analysis

● Refactoring
● Coding
● Database Management
● UI/UX Implementation
● Security Implementation
● Reverse engineering
● Data Modeling
● Data Integration
● Data Security Implementation
● Integration
● API Development
● Testing Unit and Component)
● Data Processing Implementation
● Continuous Integration
● Database Design
● Data Migration
● Data Validation
● Database Implementation

● Change Management
● Cutover Management
● Performance Tuning
● Mobile App Store Submission
● Environment Setup
● Release Preparation
● Data Migration
● Software Installation
● System Monitoring
● Load Balancing
● Compliance monitoring
● Backup and Recovery Setup
● SEO Setup

● Release and patch
management

● System audits
● Incident Management
● Security Updates
● Performance Tuning
● Backup and Recovery
● System Documentation
● Compliance Checks
● Decommissioning
● Mobile App Updates
● Data Validation
● Security monitoring
● Performance monitoring
● Security monitoring
● Capacity planning
● Software Upgrades
● User Support
● Performance monitoring
● Application monitoring

Software lifecycleHow do you infuse GenAI into this?

© 2024 Thoughtworks | Confidential

Coding assistants probably only increase delivery speed

by 10-15%, not the hyped 50%. This is still significant and

cost-effective, but some argue that the focus on speed

ignores a potential 41% increase in bug rates.

3

© 2024 Thoughtworks | Confidential 4

How Much Faster Can
Coding Assistants Really
Make Software Delivery?

© 2023 Thoughtworks | Confidential

GenAI has clear potential to increase speed and productivity.

StackOverflow 2023 Developer Survey:
“77% feel favorable towards using AI tools in
their development workflowˮ
GitHub survey: “70% of developers see a
benefit to using AI coding tools at workˮ

Industry

Weʼre using coding assistance at 40 clients
and growing; over 2000 of our developers
have had exposure to the tools.
Our internal surveys show clear positive
feedback for usefulness. The internal NPS of
GitHub Copilot is over 30 (above 20 is very
good)

Thoughtworks

Developers see
the benefits What is the impact on team speed?

Getting the numbers straight - GitHub claims about Copilot:
● 35% acceptance rates of suggestions
● 4060% portions of codebases written by Copilot (depending on language)
● Some tasks can be completed up to 55% faster.
● A GitHub developer survey says, “Teams spend 32% of their time codingˮ

What does that mean for the potential impact on story cycle time?
Scenario /
assumptions

Part of cycle time
spent on coding *

Part of coding
supportable with
Copilot

Rate of faster task
completion with
Copilot x

Potential for time
saved in cycle time

Very optimistic 40% 60% 55% 13%
Middle 30% 50% 45% 7%
Pessimistic 20% 40% 25% 2%

● Developer experience improvements alone are worth it, and will improve onboarding and learning times.
● Weʼve seen other positive impact, e.g. developers writing more tests in the time saved.

You need to look beyond speed.

Depending on your cost structure, GitHub Copilot would make up around 0.01% of your team costs.

● Coding is just one part of the software creation process.
● Using GenAI for things like requirements and testing analysis holds additional potential to improve quality

of the delivery process and reduce waste.

You need to look beyond coding.

But the hype is also leading to misguided expectations

https://stackoverflow.co/labs/developer-sentiment-ai-ml/
https://github.blog/2023-06-13-survey-reveals-ais-impact-on-the-developer-experience/
https://github.blog/2023-02-14-github-copilot-now-has-a-better-ai-model-and-new-capabilities/
https://github.blog/2023-02-14-github-copilot-now-has-a-better-ai-model-and-new-capabilities/
https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/
https://github.blog/2023-06-13-survey-reveals-ais-impact-on-the-developer-experience/

© 2025 Thoughtworks | Confidential

Estimates

Scenario Part of cycle
time spent on
coding

Part of coding
supportable
with coding
assistant

Rate of faster
task completion
with coding
assistant

Estimated
time

saved in
cycle time

Heuristic

Optimistic 40% 60% 55% 13%
Client 1 - Team manually tracked their estimated savings across 150 tickets
Tool: GitHub Copilot with GPT models

55% 50% 30% 8%
Client 2 - Some teams are able to use the tool for all of their tasks (suitable
prevalent tech stack)
Tool: Cline with Claude Sonnet model

VERY HIGH  Teams with low
friction* 60% 100% 80% 48%
HIGH  Teams with higher
friction* 40% 100% 80% 32%
MEDIUM  Upgrading a
complex existing rules engine 40% 100% 40% 16%

*friction = delivery friction like dependencies, inefficient deployment processes, etc

Coding assistant
impact on team speed
at two clients

- Speed is the most asked for factor of team productivity
when it comes to coding assistant impact.

- Cycle time is the most frequently used proxy variable
for software team speed, it measures time from starting
development work on a requirement to deployment.

- Rate of faster task completion is how much faster an
individual developer can get when coding GitHubʼs
claim last year was 55%, whereas cycle time
represents the whole team, including some of the
non-coding work

- Part of cycle time spent on coding is a factor that
represents overall friction and effectiveness of a team,
the things we usually tackle with our engineering
effectiveness practices. The higher a teams
effectiveness is, the higher the relative impact of coding
assistants on their speed can be. This heuristic helps us
illustrate that to clients.

© 2024 Thoughtworks | Confidential

Problem statement for launching an AI Capability Growth

Client expectation

❖ Deploy OOTB (Out of the Box) Al enablement

capabilities internally to drive efficiency and

effectiveness across all of organization.

❖ There is absolutely no excuse for not making

AI assisted development part of your

workflow. With all the productivity evidence

and free assistance and training provided, I

would not even consider engineers for a job

without skills and experience using AI dev

tools. Invest time in your career.

Industry Trend

❖ We believe there is an opportunity for TWs

delivery teams to leverage AI tooling to help

us deliver more efficiently to assist our clients

in getting value to market faster.
7

Account

Team

Individual

❖ #1: No clear and achievable expectations for the use of AI tools

❖ #2: No clear guidance on how to measure capability growth

❖ #3: No clear measure of success from the use of AI

❖ #6: AI Development is progressing very rapidly and it can be

confusing for individual to figure out what to use when

❖ #7: Hard to follow the current trends

❖ #4: Not yet able to hands on development

❖ #5: Not sure how to achieve best practices in a team context

© 2024 Thoughtworks | Confidential

AI Capability Growth Framework

Building AI Capability Growth framework based on

Discovery-and-Delivery-Process to solve #1, #3, #4, #5, #7. It allows us to look

at the integration of AI in each activity from an agile engineering perspective,

and the potential tooling options also allow us to keep our eyes on

development trends. 8

AI Capability Growth Roadmap

From a practical perspective, a learning path map is developed to enable

individuals to learn the fundamentals, hands-on practice and trendy

development directions end-to-end to address #2, #5, #6, #7

© 2024 Thoughtworks | Confidential

now

Our Journey of AI Capability Growth Initiative

9

ChatGPT usage
promotion

prompting engineering
Recap Gen AI promotion

problem

Define Gen AI capability

growth initiative

Publish governance

framework

Publish Learning Path &

relevant quiz

Build TDD with GitHub Copilot workshop

Explore the use of Gen AI to

accelerate splitting

requirements

Measuring GitHub

Copilot usage in delivery

Engaging VN on Leveraging

GitHub Copilot

Simplify and continue measure

GitHub Copilot usage in delivery

Build TDD with GitHub Copilot

workshop in VN
Continue social learning

2024Q32024Q22024Q12023Q42023Q3

Finish 7 sets of

quizzes for Learning

path stage 1~4

devs completed the

TDD with Github

Copilot workshop

80.5%(Xian)
61.9% (VN)

❖ Everyone who participates in the

workshop submit at least one

insight, including ticket, commit,

etc

❖ Keep collecting insights from

new member by team iteratively

collecting GitHub Copilot usage

data

100%
Using GitHub Copilot

reduced coding time for

four major usage scenarios,

reducing the average cycle

time of each team by

15.8%

15.8%> 90%

#

© 2023 Thoughtworks | Confidential

Ticket AI Assistant used Reason for (non-)usage Estimated time saved

XXX-345 Yes Generated business code 30%

XXX-362 No Bug fix for a known issue that only needs a tiny code
change

n/a

XXX-385 Yes Generated code and test data 40%

XXX-347 Yes Generated shell scripts 50%

XXX-312 No Spike with lots of research n/a

The team tracked 150 tickets over time and documented
task type, AI Assistants usage and estimated time saved

© 2025 Thoughtworks | Confidential 11

AI Assistants Applicability Analytics
Getting feedback from all team members that participated in the TDD with AI Assistants workshop. Picking up 1 of sprint data, these teams

completed a total of 150 tickets in the recent iteration. Among them, 73 tickets did use AI Assistants (48.7%), 77 tickets did not use AI

Assistants (51.3%).

The teams' usage scenarios can be roughly divided into four categories: Scenarios where AI Assistants is Not used:

❖ Local environment setup

❖ Manual tests

❖ Knowledge sharing

❖ Straightforward tasks

❖ Tools decommission or upgrade

❖ Designing and Solutioning

❖ Alerting & monitoring

❖ Supporting requests

❖ Vulnerability fixing

❖ Troubleshooting cross the system

❖ Generate test: including generating test code and

test data. Because the code structure is simple,

the accuracy is higher.

❖ Generate business code: the accuracy is limited

by the business context, and the probability of the

generated code being adjusted is relatively high,

about 30% ~ 80%.

❖ Write scripts: Since the generated scripts are less

relevant to the business, the prompting needs to

contain less information and the generated code

is more accurate.

❖ Explain code: Teams use code explanation as a

more efficient way to collect business code and

information, and some teams even use it to share

business context in a session, especially for the

legacy code.

23% share
10~40% increase

23% share
15~50% increase

13% share
20~50% increase

41% share
10~40% increase

© 2025 Thoughtworks | Confidential 12

X = Development Time (the percentage of time the team spends on implementation and testing during a sprint. In the table above, this value represents the average

for the Xi'an team in each segment over the past two months)

Y = Coding Time saved (the percentage of coding time saved based on the analysis of each ticket collected by the team capability champion)

Z = Usage Scenario Proportion (a statistical value representing the proportion of tickets for this type of usage scenario in the sprint)

S = Applicable Cycle Time Saved (the average improvement rate of overall cycle time across teams after weighting each usage scenario (currently 4 usage scenarios))

Scenarios
Development

time

Generate tests Generate business code Write scripts Explain code
Applicable

weighted

cycle time

saved [S]

General

weighted

cycle time

saved 48.7%

23% [Zi] 41% 13% 23%

Coding time

saved

Cycle time

saved

Coding time

saved

Cycle time

saved

Coding time

saved

Cycle time

saved

Coding time

saved

Cycle time

saved

Very

optimistic
76.5% [X] 30.0% [Yi] 23.0% 50.0% 38.3% 50.0% 38.3% 40.0% 30.6% 33.0% 16.1%

Middle 55.4% 28.0% 15.5% 29.4% 16.3% 38.7% 21.4% 22.0% 12.2% 15.8% 7.7%

Pessimistic 48.0% 15.0% 7.2% 10.0% 4.8% 33.3% 16.0% 10.0% 4.8% 6.8% 3.3%

AI Assistants Increases Speed and Productivity

48.7%: According to the most recent iteration, the team has completed about 150
tickets in total. Of these, 73 tickets did use AI Assistants (48.7%).

© 2024 Thoughtworks | Restricted

Smart Alert Diagnosis and
Troubleshooting with AI

13

An Australian multinational software company offering accounting
solutions for SMEʼs wanting to reduce issue identification time and
enhance service stability, developed an automated AI analysis tools,
integrating various monitoring metrics, health checks, Sumo logic metrics
to automatically obtain the current system status and indicators, and
integrated automated responses in Slack. This information will is being
integrated with Glean to generate final troubleshooting steps based on
existing documentation and providing recommendations via Slack.

This allows to reduce manual effort and quickly identify and resolve
production issues for all 13 systems or services, reducing issue
identification time from 40 minutes to under 15 minutes and achieving a
99.97% system availability.

Integrating AI monitoring tools to reduce alert
handling time and enhance service stability.

Maintain high availability and
stability of services. -25%

Reduction in issue
identification time

From 30 to 15 min

99.97%
Maintained High
System availability

DA
M

O
 A

I B
ot

Alert
Details

User
Eligibility

Knowledge Retrieval

Support
Agent

© 2025 Thoughtworks | Confidential

How much AI will save you on productivity?

14

There is no “X%ˮ answer to
this question.

How to measure developer
productivity is one of the
constant challenges in
software delivery, and itʼs
multidimensional. This doesnʼt
change with the advent of AI
tools.

Reduced
story

cycle time
(up to 10% with

a coding assistant)

Faster
onboarding

and
upskilling

Improved
Developer

Experience
Higher

test
coverage

Code
quality and
maintain-

ability

Faster
feedback

loops

Stability:
MTTR,

Incidents,
Availability

Less
delivery
friction

© 2023 Thoughtworks | Confidential

Engineering practices still matter, if not more.

Good practices help
deal with bottlenecks
from higher coding
throughput.

GenAI amplifies your
status quo - the good
gets even better, but
the bad can get worse.

Good practices
mitigate the GenAI
risks, and help manage
the quality of more
code.

PotentialWasted capacity

If you can code faster,
can you review and
ship faster?

If you can code faster,
can you fill the
backlog faster?

If you can produce more
code, can you also keep
your technical debt in
check?

If you can produce more
features, how are you
tracking their value?

© 2025 Thoughtworks | Confidential

Common impediments
to flow & their cost
Examples of common friction that are draining
productivity and block flow

Finding information - The usually “hiddenˮ cost of not
quickly finding, or not finding at all, important knowledge about
APIs, integrations & systems.

DevEX friction - The cost of productionizing software so that
it is highly available. Includes drag from deployment, testing,
observability, and resiliency. Also, the cost of having to use
clunky tools, poorly designed APIs, lack of self-service
capabilities.

Cognitive overload / task switching - The cost of
misunderstood integrations, abstractions, and data. Cognitive
taxes create quality issues, slowing delivery significantly.

Slow quality feedback loops - Defects caught in pre-prod or
prod have exponentially higher cost to remediate and disrupt
the flow of value added work.

Operating model friction - Lost time and rework due to the
flow of work between product and engineering, such as poorly
specified product specs and architecture requirements and
review.

Finding information

Slow feedback

Cognitive friction
DX friction

Operating model friction

Team effectiveness

Value-add
delivery

< 30%> 70%

Overhead /
Waste

Value-add
delivery

60%

Current
state

Future
state

16

© 2024 Thoughtworks | Confidential

Q&A

17

